Large-Margin Metric Learning for Constrained Partitioning Problems

نویسندگان

  • Rémi Lajugie
  • Francis R. Bach
  • Sylvain Arlot
چکیده

We consider unsupervised partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, such as clustering, image or video segmentation, and other change-point detection problems. We emphasize on cases with specific structure, which include many practical situations ranging from meanbased change-point detection to image segmentation problems. We aim at learning a Mahalanobis metric for these unsupervised problems, leading to feature weighting and/or selection. This is done in a supervised way by assuming the availability of several (partially) labeled datasets that share the same metric. We cast the metric learning problem as a large-margin structured prediction problem, with proper definition of regularizers and losses, leading to a convex optimization problem which can be solved efficiently. Our experiments show how learning the metric can significantly improve performance on bioinformatics, video or image segmentation problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Margin Metric Learning for Partitioning Problems

In this paper, we consider unsupervised partitioning problems, such as clustering, image segmentation, video segmentation and other change-point detection problems. We focus on partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, which include mean-based change-point detection, K-means, spectral clustering and normalized cuts. Our main goal is to le...

متن کامل

Iterated Support Vector Machines for Distance Metric Learning

Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while many existing metric learning algorithms become inefficient for large scale problems. In this paper, we formulate ...

متن کامل

On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines

In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic objective function. Unlike most of previous approaches which typically decompose a multiclass probl...

متن کامل

Robust Boosting via Convex Optimization: Theory and Applications

In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules – also called base hypotheses. The so-called boosting algorithms iteratively find...

متن کامل

Distance Metric Learning for Large Margin Nearest Neighbor Classification

We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014